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ABSTRACT 

Statistical parameters of the phase-error behavior of a phase-locked 
loop tracking a constant frequency signal in the presence of additive, 
stationary, Gaussian noise are obtained by treating the problem as a 
continuous random walk with a sinusoidal restoring force. The Fokker- 
Planck or diffusion equation is obtained for a general loop. An exact 
expression for the steady-state phase-error distribution is available 
only for the first-order loop, but approximate and asymptotic expres- 
sions are derived for the second-order loop. Results are obtained also 
for the expected time to loss of lock and for the frequency of skipping 
cycles. Threshold criteria for the phase-locked loop are discussed, and 
thresholds of approximate models which have been widely accepted 
are obtained by comparison with the exact results available for the 
first-order loop. 

1. INTRODUCTION 

The phase-locked loop is a communication receiver 
which operates as a coherent detector by continuously 
correcting its local oscillator frequency according to a 
measurement of the phase error. A block diagram of the 
device is shown in Fig. 1 with the pertinent input and out- 
put signals indicated. The output of the voltage-controlled 
oscillator (VCO) is a sinusoid whose frequency is con- 
trolled by the input voltage e ( t ) ;  that is, 

d B 2  i, ( t )  = - = K ,  e ( t )  dt 

SO that when e (t) = 0, the oscillator frequency is oo. The 
received signal is a sinusoid of power AZ w, of arbitrary Fig. 1. Phase-locked loop 

. '  
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frequency W, and of phase 8. Thus, it is represented by 
the expression 

(2)n A sin [ ~ t  + e] = (2)s A sin [Wet + d l  (t)] 
where 

el (t)  = (W - Wo) t + e (2) 

The noise is assumed to be stationary, Gaussian, and 
white of one-sided spectral density N o  w/cps. The noise 
process over an arbitrary period of duration T can be 
expanded in a Fourier series whose coefficients become 
independent Gaussian variables in the limit as T ap- 
proaches infinity (Ref. 1). By collecting the sine and 
cosine terms of the series, we can represent the noise 
process of infinite duration by the expression 

n (t)  = (2)n nl (t) sin (,t + 8) + (2)n n, (t) cos (at + 6') 
where nl (t) and n, (t) are both stationary, white, Gaus- 
sian processes of one-sided spectral density N o  w/cps and 
are statistically independent of one another. 

Thus the product of input and reference signals is 

2 {A sin [ m o t  + d l  ( t )]  + n1 (t) sin ( w t  + 8) 

+ n, (t) COS (,t + 8)) { K ,  cos [oat + 8, ( t ) ]  ) 

= AK3sin[8,(t) -8 , ( t ) ]  

+ K3nl (t) sin [(w - w0) t + 8 - 8, ( t )]  

+ K,nZ (t) cos [ (W - Wo) t + 8 - 8, (t)] 

+ double frequency terms 

= AK, sin [ e ,  (t) - 8, ( t ) ]  

+ K3nl (t)  sin [el ( t )  - 8, (t)l 

+ K3nz ( t )  COS [el (t)  - e, (t)l 
+ double frequency terms 

where 8 , ( t )  is given by Eq. (2). The double frequency 
terms may be neglected since neither the filter nor the 
VCO will respond significantly to these for reasonably 
large w". Then from Fig. 1 we see that 

where F (s) is a rational function which represents in 
operational notation the effect of the linear filter in the 

loop. If we let + (t) = el ( t )  - 8, (t) and K = Kl K ,  K ,  
and use Eq. (l), we obtain 

I$ (t) = el (t) - K ,  e (t)  

Then from Eq. (2) and (3) we have 

I$ ( t )  = (W - o0) - KF (s) [A sin + (t) 
+ nl ( t )  sin 4 (t) + n2 (t)  cos 4 (t)l (4) 

The instantaneous phase error or difference between 
the received signal and the reference signal at the output 
of the VCO is + (t). Equation (4) is the exact expression 
for the operation of the phase-locked loop in the pres- 
ence of noise. Several authors beginning with Gruen 
(Ref. 2) have obtained solutions of this equation in the 
absence of noise for a number of filter transfer functions 
and also for the case of linearly time-varying input fre- 
quency. The most complete treatment of the noise-free 
performance is contained in Ref. 3. The general case 
in which additive noise is present has been treated by 
a variety of approximations. Jaffe and Rechtin (Ref. 4) 
assumed + (t) to be at all times small enough that 
cos + N 1 and sin + N + < < 1 so that the expression in 
brackets in Eq. (4) becomes A+ (t) + n, (t). This produces 
a linear time-invariant model of the system. Recently 
Van Trees (Ref. 5 )  refined this analysis by linearizing 
about the equilibrium point $0, making the assumption 

sin (+ - 40) 21 + - +n 

cos (+ - +") N 1 
and 

This generates a linear time-varying model. Develet 
(Ref. 6) applied Booton's quasi-linearization technique 
(Ref. 7), replacing the sinusoidal nonlinearity by its aver- 
age gain. Both Van Trees' and Devlet's methods obtain 
estimates of the noise threshold of the device. Margolis 
(Ref. 8) obtained a series representation for the moments 
of the phase error, but the method was too involved to 
give useful results. 

Unlike these analyses, continuous random walk or 
Fokker-Planck techniques yield exact expressions for the 
statistics of the random process + (t). Unfortunately, ex- 
pressions in closed form can be obtained only for the 
first-order loop (i.e., when the filter is omitted). For the 
general case, a partial differential equation in + and its 
time derivatives is derived, but solutions cannot be 
obtained in general. 

These techniques were first applied to this problem 
in the Soviet literature by Tikhonov (Ref. 9, IO), who 
obtained the steady-state probability distribution of + 
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for the first-order loop enclosed form and an approxi- 
mate expression for the distribution when the loop con- 
tains a one-stage RC filter. Tikhonov’s result on the 
steady-state distribution for the first-order loop is con- 
tained in Part I11 of this Report. The variance and cumu- 
lative distribution are also obtained. In Part IV, we derive 
the Fokker-Planck equation for the general loop filter 
which produces zero mean error. In Part V, this equation 
is specialized to the second-order loop, and the form of 
the solution for the steady-state probability distribution 
of + is obtained. Part VI presents results on the mean 
time to loss of lock and the frequency of skipping cycles 

for the first-order loop, which is a random walk problem 
with absorbing boundaries. Finally, in Part VIII, the 
results are compared with those of the above mentioned 
approximate models in an attempt to determine validity 
thresholds for the models and a performance threshold 
for the device. 

First of all, in the next Part, a simple mechanical analog 
of the phase-locked loop is presented which provides a 
qualitative description of the operation of the device and 
an understanding of the nature of the statistical param- 
eters required for its quantitative description. 

II. THE FIRST-ORDER LOOP AND ITS MECHANICAL ANALOG 

If the filter is omitted, we let F (s) = 1 in Eq. (4) and 
obtain the first-order Merentia1 equation 

a( t )  = (0 - o,,) - K[Asin+(t) 

+ nl ( t )  sin + ( t )  + n, ( t )  cos + @)I (5) 

Hence the term “first-order” loop. Since n1 (t) and n, (t) 
are both white, the instantaneous change in + represented 
by its derivative depends only on the present value of + 
and the present value of the noise. Hence + (t) is a con- 
tinuous Markov process, permitting us to use random 
walk techniques to determine its probability distribu- 
tion. A mechanical analog is useful in understanding the 
mechanism of this “random walk.” Consider the pendu- 
lum of Fig. 2 consisting of a weightless ball attached 
by an infinitesimally thin, weightless rod to a fixed point, 
and let the apparatus be horizontal on a table top which 

is being randomly agitated. The pendulum is free to turn 
a full revolution about the point. Let the rod be initially 
at an angle + with respect to the vertical axis. Let an 
external force (such as a constant wind) be exerted on 
the ball in the vertical direction. Let the surface of the 
table be rough so that it produces a frictional force 
opposing motion of magnitude fJ. In addition, let the 
ball be equipped with an internal engine which exerts 
a constant force F along the axis of motion. The random 
agitation of the table produces a force on the ball which 
may be represented by the two stationary, white, Gaus- 
sian processes of zero means nl (t) in the vertical direc- 
tion, and n , ( t )  in the horizontal direction. Then by 
equating forces along the instantaneous axis of motion, 
we obtain: 

f ~ $  + Gsin+ = F - n,(t)sin+ - m2( t )cos+  (6) 

3 
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If we divide by f and identify F / f  with (0 - mo), G/f with 
AK, and l/f with K ,  we see that Eq. (6)  is the same 
as Eq. (5).  

G 

Fig. 2. Mechanical analog of the first-order loop 

It is clear that in the absence of the random forces, 
the pendulum approaches the equilibrium position 

+(, = sin-l (F/G) = sin-l(O - o, ) / (AK)  (7) 

at which point the velocity is zero. Because this is a 
first-order system, there can be no overshoot. If F > G 
or (0 - wo) > AK, there can be no equilibrium position, 
and the pendulum continues to revolve indefinitely 
which corresponds to a loop which can not achieve lock. 
When the random or noise forces are applied as well 
as the constant ones, the motion becomes a random walk, 
but when the noise variance is small, there is a strong 
tendency for the angle + to approach and remain about 
this equilibrium position. 

The complete statistical description of the random 
walk of the angle + is given by its probability density 
as a function of time, p (+, t). To understand qualitatively 
the behavior of this function, let us assume that the 
constant force F = 0 and that initially (at t = 0) the 
pendulum is at rest in the vertical position. Thus, 
p (+, 0) = 6 (+). With the passage of time, the effect of 
the random forces will be felt in the movement of the 
pendulum from the equilibrium position. The qualitative 
behavior of the probability density function is sketched 
in Fig. 3. Of course, the condition 

must always be met. After a sufficient amount of time, 
the random forces will push the pendulum around by 

more than half a revolution so that it will tend to return 
to the equilibrium position after a full cycle of rotation 
in either direction. This corresponds to the reference 
signal of the phase-locked loop advancing or retreating 
one cycle relative to the received signal. The average 
time for this occurrence depends on the signal-to-noise 
ratio. Thus after a sufficiently long period, the probability 
density will appear as a multimodal function, each mode 
being centered about equilibrium positions spaced 27 rad 
apart, the central mode being the largest with each suc- 
cessive maximum progressively smaller. After an even 
longer period equal to several times the average time 
between revolutions, the central mode of the probability 
density will have diminished, the modes to either side 
will have become almost as large, and more modes of 
significant magnitude will have appeared. The central 
mode will remain the largest since the pendulum may 
have revolved in either direction with equal probability. 
Finally, in the steady state an arbitrary number of revo- 
lutions will have occurred. Then the probability density 
will be a periodic function (as will be proved in Part 111). 
However, because the integral of the function must equal 
one at all times, the magnitude must be everywhere zero. 

P ( + .  t 3 )  - n n A h 

-6n -br -2* 0 2 U  4r 6*  
+ 

Fig. 3. Qualitative behavior of the probability density 
function for the first-order loop, o = w0 

In the case for which F is not zero, or equivalently 
a # w o ,  then clearly the pendulum will have a greater 
tendency to swing around in the sense corresponding 
to the direction of the force. Hence, the density function 
p ( + , t )  will not be symmetrical. In either case, we are 
lead to realize that the significant parameter, at least 
in the steady state, is the angle (or phase error) + modulo 
27, since the number of revolutions of the pendulum 
which have occurred does not affect the present state 
of the system. In fact, although p (+, t )  yields a complete 

4 
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description of the statistical behavior, it would appear 
that a combination of the steady-state distribution of 
+ modulo 2~ and the frequency or average time between 

revolutions would yield a simpler and equally valid rep- 
resentation. In the following Parts of this Report, these 
parameters will be obtained quantitatively. 

4 

111. THE STEADY-STATE PHASE-ERROR PROBABILITY DENSITY 
FOR THE FIRST-ORDER LOOP 

A continuous random walk which is a Markov process 
is described by the statistical parameters of the incre- 
mental change of position as a function of the present 
position. Thus from Eq. (5), in the infinitesimal increment 
of time ~ t ,  the phase will change by an amount' 

Thus, since nl (t) and n, (t) are white, Gaussian processes 
with 

- -  
n, (u) = n, (u) = 0 

and 

'This assumes that qi (t)  is a continuous process, which is justified 
by physical considerations. 

it follows that for a given position +, A+ is a Gaussian 
variable with mean 

6 == [(IO - o0) - M S i n + ]  A t  (8) 

and variance 

It is worth noting in passing that for the determination 
of p (4; t), Eq. (9) shows that the two noise terms could 
be replaced by a single noise n'(t) of the same spectral 
density so that Eq. (5)  could be rewritten 

+(t) = ( ~ - ~ , ) - A K s i n + ( t ) -  Kn' ( t )  (10) 

which is conveniently represented by the block diagram 
of Fig. 4. The model can be shown trivially also to hold 

5 
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I I I 

for a higher order loop in which the filter is included 
after the amplifier. The VCO of Fig. 1 is replaced by an 
integrator and the multiplier by an adder and sinusoidal 
nonlinearity. This differs from the linearized model of 
Ref. 4 only in the inclusion of the sinusoidal nonlinearity. 

Although the equation is linear in p, the complete solu- 
tion for p ( + , t )  is somewhat complicated by the non- 
linear behavior of the variable coefficients. 

However, the result of greatest interest is the steady- 
state distribution 

n ' ( t )  I 
(.-u0)I + 

UJ 
(.-u0)I + 

UJ 

Fig. 4. Model of first-order loop 

With the knowledge of the statistical parameters of 
the increment A+, we may proceed to obtain p(+,t). It 
was shown by Uhlenbeck and Ornstein (Ref. 11) and 
Wang and Uhlenbeck (Ref. 12) that for a continuous 
Markov process, the instantaneous probability density 
p (4, t) must satisfy the partial differential equation 

with the initial condition 

where +,, is the initial value of +, and where A(+) and 
B (+) are normalized moments of the infinitesimal incre- 
ment given by the following expressions: 

A (4) = lim ( l /A t )G  
A t - 0  

Equation (11) is known as the Fokker-Planck equation 
or the diffusion equation because it is essentially the same 
as the equation for heat diffusion. From Eq. (8) and (9) 
we obtain 

A(+)  = (0 - o,,) - AKsin+ 

B (4) = K2N,/2 

so that Eq. (11) becomes 

*=-[(AKsin++wo-W)p] a + ; K ' N " -  1 , a'.p (12) 
at a+ a+'. 

6 

By definition, the steady-state distribution does not vary 
with time. Therefore, 

(14) 

Thus in the steady state, the partial differential Eq. (12) 
reduces to an ordinary differential equation in p (4). 
Letting 

a = (4A)/(KNo) 

and 

p = 14 ( w  - O")1/(K2N0) (15) 

we obtain from Eq. (12) 

If we integrate once with respect to +, we obtain a 
first-order linear differential equation which , is readily 
solved as' 

To evaluate the constants, we must utilize boundary con- 
ditions. First of all, as was pointed out in Part 11, in the 
steady state we are interested in the distribution of 

modulo 2 ~ .  Thus, one condition is: 

Secondly, since + must lie between -r and r and p (+) 
is a probability density, it follows that 

'The results of Eq. (17) through (21) were first obtained by V. I. 
Tikhonov (Ref. 9). Actually, these are a special case of an expres- 
sion derived by Andronov, Pontryagin and Witt (Ref. 13) for a 
random walk problem with arbitrary nonlinear restoring forces. 
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Using Eq. (18), we obtain 

(N) 
exp( -2p~)  - 1 1: exp - (a cos x + px) dx 

D =  

Then by means of Eq. (19), the constant C can be 
evaluated. 

In the special case p = 0 (which requires 0 = wo; i.e., 
when the VCO quiescent frequency is exactly at the 
frequency of the incoming signal), from Eq. (20) we see 
that D = 0 and that when 0 = oo, the probability density 
becomes 

- * 4 + 4 r  (21) exp (a  cos $1 
p (+I = 2* I" ( a )  

since 

The parameter a plays a very important role. From 
Eq. (15) we have 

But A' is the received signal power, while AK/4 is an 
important parameter defined for the linearized model 
of the loop (Ref. 4). If we replace the sinusoidal non- 
linearity in the model of Fig. 4 by its gain A about = 0, 
we obtain the linearized model. Then the variance of + 
is obtained by using Parseval's theorem as: 

The variance of + is the same as the noise power at the 
output of an ideal low-pass filter of bandwidth AK/4 
when the input is white noise of one-sided spectral 
density No.  Hence, for the first-order filter, the loop band- 
width is defined as 

B ,  AK/4 (23) 

so that Eq. (22) becomes 

which is the signal-to-noise ratio in the bandwidth of 
the loop. 

Equation (21) is plotted in Fig. 5 for several values 
of a. It resembles a Gaussian distribution for large signal- 
to-noise ratios, a, and becomes flat as a approaches zero. 
The asymptotic behavior of Eq. (21) for large a is of 
interest. Since for large a 

4.0 

33 

3.0 

2.5 

- 
2 2.0 
% 

1.: 

I .c 

0.: 

C 

[exp (aces+)] {exp [a (cos+ - l)]] 
(dJ)  = [27rIo (a)] (2*/4% 

I ~ 0 . 1 0 0  

)I - 0 . 4 ~  0 0 . 4 ~  0.0- 

+, rad 

Fig. 5. First-order loop, steady-state probability 
densities for w = 00 
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Expanding cos + in a Taylor series, we obtain 

- X L + L x  

When a is large, p (+) decays rapidly so that the function 
is very small for all but very small values of +. Thus the 
higher order terms of the series representation of cos + 
have very little effect for moderate values of p (4). Hence 
the graph of p (4) will appear to be nearly Gaussian for 
large a, and in this case, the results of the linear model 
are quite accurate. 

The cumulative steady-state probability distribution 

r 

is also of interest since it indicates the percentage of 
time during which the absolute value of the loop phase 
error 4 is less than a given magnitude This may be 
calculated when 0 = Wo in the following manner. Expand- 
ing p (+) of Eq. (21) in a Fourier series, we have 

exp (a COS +) 
(4) = 2X10 (a) 

Then 

This series converges rapidly so that Eq. (26) could be 
calculated for several values of a without the use of a 
large-scale digital computer. The results are shown in 
Fig. 6. 

8 

The variance of + can be similarly obtained. 

CC 

2xZ, , (a )  -n $2 [ I ,  (a) + 2 n = 1  z I, (a) cos n+ 1 d+ 
- - 

This series converges even more rapidly than that of 
Eq. (26). It was computed manually and is plotted in 
Fig. 7 as a function of l/a. Note that as the SNR a 
approaches zero, the variance approaches x 2 / 3  which is 
the variance of a random variable that is uniformly dis- 
tributed from - X  to +n. 

For the general case (o#:o,) ,  Eq. (17), (19), and (20) 
yield the entire distribution. However, analog or digital 
computation is required to evaluate the pertinent inte- 
grals. The case for which @/a) = (0 - W,)/(AK) = sin (~/4) 
is shown in Fig. 8. The constants as well as the distribu- 
tion were obtained by means of the analog computer. 

0 0 2  0 4  0 6  0 8  I O  12 14 16 

Fig. 6. Steady-state, cumulative probability distribution 
of first-order loop for w = 
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Fig. 7. Variance of phase-error for first-order loop 
where o = 00 

+, rad 

Fig. 8. First-order loop, steady-state probability 
densities for (0 = o,)/(A K) = sin ( ~ / 4 1  

9 
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IV. THE FOKKER-PLANCK EQUATION FOR HIGHER-ORDER LOOPS 

Consider the phase-locked loop whose filter has the 
rational transfer function 

F (4 = G (4/H (4 
where G (s) and H(s)  are polynomials such that G (0) =1, 

degG(s)LdegH(s)  = n - 1 

H ( 0 )  = 0 

then 

G ( s )  = kla& ao+O 

H ( s )  = klb& bn-,+O 

k = o  

(28) 

k = 1  

This will be referred to as an nth-order loop. In this case, 
Eq. (4) which describes the operation of the loop becomes 

s H ( s ) +  = -KG(s )  [(A + n,)sin+ + n,cos+] (29) 

since 

The reason for the pole at the origin of F ( s )  is now 
clear. It eliminates the constant (0 - o0) which causes 
the steady-state phase error in the first-order loop. Now 
let us define the random variable E by the relation3 

Inserting this in Eq. (29), we obtain 

sH (s)  E = - K {[A + n,] sin [G (s) E ]  + n2 cos [G (s) E]} 

(31) 

which is an nth-order differential equation. Now let us 
define the n random variables xo,xl, . . . , Xn-1 as 

Inserting these for the derivatives of E in Eq. (31) and 
by using Eq. (28), we obtain 

This substitution which leads to the representation of + as the 
sum of the components of a Markov vector (Eq. 33) was suggested 
by J. N. Franklin. 

n - 2  r / n - I  \ 

Also, we have 

so that we may express the derivatives i k  in terms of the 
variables x k  by the n differential equations 

It follows also from Eq. (28), (30), and (32) that 
n - 1  + = z ak? 
k = o  

(34) 

The random vector (xo, . . . , x ~ - ~ )  is a Markov vector 
since an incremental change depends only on the present 
state of the vector. 

Wang and Uhlenbeck (Ref. 12) have shown that for 
a vector Markov process x = (xo,xl, . . * , xn-J, the 
Fokker-Planck equation is 

where 

and 

1 -  
B k l  (x) = lim - (Axk) (A%) 

A t + # )  at 

1 0  
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with the initial condition 

P (x, 0) = n 8 (Xk - Xk, 0 )  
k = o  

&(X)=xk+l fork=0,1,  - .  . , n - 2  

1 Kd Bn-l,n-l(x) = lim - 7 
A t + o  At bn-i 

Thus, the Fokker-Plan& equation for the nth-order 
loop is 

K2No a2P (x ,  t) -t - 4b:-, 

where 

Solution of this general case does not appear possible. 
However, in the next Section some results are obtained 
for the second-order loop. 
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V. STEADY-STATE PROBABILITY DISTRIBUTION FOR THE SECOND-ORDER LOOP 

The loop filter of greatest interest4 is 

F (s) = 1 + (a/$ = (s + a)/(s) 

which requires a single integrator with gain a. In terms 
of the parameters of (28), = 2, = a, a, = 1, Even this partial differential equation cannot be solved 
b, z 1. Substituting these parameters in Eq. (33) and directly. However, since we are interested only in the 
(36), we obtain the differential equations for the random distribution Of $ 
variables 

il = - K [(A -1- n,) sin (axo + x,)] - Kn, cos (axo + xl) 
lEo = x, 

and the Fokker-Planck equation 

(37) we may integrate both sides of Eq. (41) with respect to z 
over the infinite line and obtain an ordinary differential 
equation in p (4) 

a K Z N ,  a2p ap 
at ax,, ax, 4 ax: 
- - - -xl + - [(AK sin (axo + x,) PI + - - 

where 

+ = ax,, + x, 
But 

If we restrict our attention to the steady-state probability 
distribution 

P (xo,xl) = lim P(xo,xl,t)  
t + m  

since 

K",, d2p + -  4 d@ 

so that Eq. (42) becomes 

[ A K s i n + - a + + a E ( ~ I + ) ] p + -  
4 G  

we obtain (43) 

ap a K ~ N ,  a2p Unfortunately, it is not possible to determine exactly 
E (z l+) ,  which is a function of +, without knowing 
P (2, +), which would require solution of Eq. (41). How- 
ever, its general form can be obtained as follows: from 
Eq. (40) we have z = + - x1 so that 

x1 - = AK -[sin (axo + x,) PI + - - ax,, ax, 4 ax: 

(39) 
With the substitutions 

x , ( m )  - xl(t)  = -AK sin+(t)dt  
'Tikhonov (Ref. 10) considered the RC low-pass filter whose trans- 
fer function is l/(s + b). Its value is questionable, however, since 
it does not reduce the mean phase error to zero, as the perfect 
integrator does. t 

Lm 
- K /I" n, (8 sin + ( 5 )  dz - K / m  *Z ( 5 )  cos 4 (5 )  4 

12 



Since the noise is white, n, (t) and nz (t) are independent 
of + (t) for all t so that, since n l )  = a) = 0, the ex- 
pectations of the noise terms are zero. Also 

This is the integral of the expectation of sin 4 over the 
entire past history of the process given the present value 
of +. Combining Eq. (43), (44), and (#), and letting 
t = t + T, we obtain 

O = - { - ( ~ i n + - a ~ ~ E [ s i n + ( t +  d 4A ~ ) l + ( t ) ] d ~ )  
d+ KNo 

The magnitude of the expectation is always less than 
one and becomes negligible for values of T several times 
the inverse bandwidth of the spectrum of +( t ) .  This 
bandwidth is proportional to AK, as we found for the 
first-order loop. Therefore, the order of magnitude of 
the integral is inversely proportional to AK, and if 
a < < AK, the second term in the coefficient of p (+) is 
much smaller than the first. Neglecting this second term 
reduces Eq. 46 to the steady-state Fokker-Planck equa- 
tion for the first-order loop (Eq. 16) with 0 = o0, whose 
solution is Eq. (21). Thus when the second integrator 
gain a < < AK, 

7rL+L77 (47) 

On the other hand, for any value of a when the SNR 
is large enough, + (t) will be small for all time so that 
sin + (t) 21 + (t) and both + (t) and sin + (t) will be nearly 
Gaussian processes. In this case, the expectation can be 
approximated by 

where p + ( ~ )  is the normalized autocorrelation function 
of the stationary process + ( t ) .  The integral can be ob 
tained by using Parseval's theorem: 

where R + ( T )  is the unnormalized autocorrelation func- 
tion, u2 the variance of +, and S+ (0) the spectral density. 
Since we have approximated sin + by +, we may use 
the linearized version of Fig. 4 with the loop filter 
F (s) = [l + (a/$]  inserted. Then 

so that Sg (0) = (No) / (2A2) .  

NO m 

u2 = 1 S+(,)& = = ( A K  + a )  27 -m 

and 

lm p+ (T) dr = 1/(AK + U )  

Inserting this integral in Eq. (48) and substituting in 
Eq. (46), we obtain 

whose solution with the boundary conditions of Eq. (18) 
and (19) is 

(49) 
exp (a' COS +) for large a' P (+) 271, (a'> 

where the effective SNR, a', is given by 

If we let B,  = (AK + a)/4, this is the same expression 
as that for the first-order loop with o = wO. As would be 
expected, this expression for loop bandwidth for the 
second-order loop is that obtained from the linear model 
of the loop. 

13 
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VI. M E A N  TIME T O  LOSS O F  LOCK AND FREQUENCY O F  SKIPPING CYCLES 

Since we have obtained only solutions for steady-state 
probabilities, a valuable statistic is the expected time 
required for the absolute value of the phase error to 
exceed some value + t  when it is initially zero. When 
this occurs, the loop will be said to have lost lock. Of 
particular interest is the case for which +z = +2r,  which 
represents a loss or gain of a complete cycle, or for 
the mechanical analog, a complete revolution of the 
pendulum. 

We only treat the case of the first-order loop for which 
the received frequency 0 equals the VCO quiescent fre- 
quency 00 so that + = 0 is the equilibrium position. This 
is also a good approximation to the steady-state behavior 
of the second-order loop with any value of 0 - 00 but 
with very small integrator gain a, as will be discussed 
later in this Part. For the first-order loop, when U#O,,, 

the same approach can be used measuring phase error 
from the equilibrium position rather than from zero, but 
the results are in the form of integrals which require 
numerical calculation. 

Returning to the mechanical analog of the pendulum 
of Part 11, we treat the motion of the ball by the oper- 
ational equation 

;P = -AKsin+ - Kn,sin+ -Kn,co+ 

as long as I + I < + z .  But when the pendulum angle + 
reaches &+z, we assume that it is grasped by a demon 
and removed from operation forever after. We seek the 
average time for this event to occur when the pendulum 
is initially at rest at + = 0. As long as I+ I < +z,  the proba- 
bility density of + is described in the same manner as 
before by the Fokker-Planck equation 

a NoK2 9 * =-(AKsin+p) + - at a+ 4 a42 

However, as soon as 141 reaches 41 for the first time, 
the pendulum is removed from action SO that 

Thus we have the boundary conditions5 

Solution of Eq. (50) over the interval - + t  < + < + z  
with the boundary conditions of Eq. (51) would yield the 
probability density p (+, t). Its integral over the interval 

gives the probability that + has not yet reached $ 1  at 
time t. Then the probability density of the time when 
141 reaches + I  is - [a#( t ) ] / (a t ) .  Thus the expected time 
to reach the out-of-lock position + z  is 

T = 1- -ty= - [ t # ( t ) ] h  + l m ) ( t ) d t  

(53) 

Since with probability 1, I+ I must reach + t  before t = co, 
then J I  ( 0 0 )  = 0 so that the combination of Eq. (52) and 
(53) yields the mean time to lose lock 

Now if we integrate both sides of Eq. (50) with respect 
to t over the infinite interval, we obtain 

(5-5) 
where 

As we noted previously, p (4, co) = 0, and since + is 
assumed initially at zero, p (+, 0) = S (4). Therefore, 
we have 

(56) 
N , K ~  a* P (+) a 

a+ -a(+) =-[AKsin+P(+)] +- 4 a+, 

The solution of the so-called first passage time problem by means 
of the Fokker-Planck equation with absorbing boundaries was first 
treated by Siegert (Ref. 14). 

1 4  
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which may be solved using the boundary conditions 

(57) 

P ( - + l )  = p d - + z , t ) d t = o  

The solution to Eq. (56) may then be integrated with 
respect to + over the interval -+z ,+z  to obtain T, the 
expected time to lose lock of Eq. (54). Taking the indd-  
nite integral of both sides of Eq. (56), we obtain 

where C is a constant to be evaluated from the boundary 
conditions. The solution to the kst-order differential 
equation is 

p (4) = exp (a  cos 4) 

[C - f.4 (41 A 
(59) 

-a  COS X 

where 

A' 
a = N o  (AK/4) 

and 

NK' AK 4B, - - 
y = * = - -  a a 

Applying the boundary conditions of Eq. (57) yields the 
values of the constants as D = 0 and C = 1/2. 

Thus 

(0) 

and integrating with respect to + over the interval 
[ - + z , + z ] ,  we obtain an expression for the mean time 
to lose lock 

The domain of integration is the right isosceles triangle 
shown in Fig. 9. We can obtain a series representation 
of this double integral by expanding the integrands in 
Fourier series 

m 

exp(acos+)=Zo(a)+2 2 Zm(a)msm+ 
m = 1  

(62) 
a0 

exp(-acosr) =Zo(a)  + 2  2 (-l)"Zn(a)afilr 
n=1 

Fig. 9. Domain of integral 1 

Then 

T="+%'' Y O  

L m=ln=l J 

15 



JPL TECHNICAL REPORT NO. 32-427 

Y 

where 

[n: n ( n - m )  l l  20s (n - m) $ 1  - + 
when n # m 

whenn = rn (63) 

This expression may be computed without the aid of a 
large-scale digital computer because the sequence I, (a), 
and consequently the above series, converges quite 
rapidly. 

However, the most important result which we seek 
can be obtained in closed form. This is the frequency 
of skipping cycles, or, in other words, the inverse of 
the expected time between skipping cycles, which is 
T ( + l  = 2 ~ ) .  It is clear from Eq. (63) that when $ 1  = 27 

I I I 
I I 

I I t \\\ I I 

I I 

I 0.10000 

0 0 

5 c 
0 

0 

4 q 0.01000 
v) 
W 
-I 
0 * 
0 

? 
h 
5 
VJ 0.00100 
Y 

LL 
0 

h 
5 ?i Y 
0 o.OO1ool 
W 
3 e a 
LL 

where we have used 

N o K 2  - AK 4BL 
y = 4 - - -  a a 

so that 

frequency of skipping cycles = ( 2 B L ) / [ n Z a I f  (a ) ]  (65) 

This parameter normalized by B ,  is shown as a function 
of a in Fig. 10. 

For large SNR, a, 

so that 

frequency of skipping cycles N [ ( 4 B L ) / r ]  e-2a (66) 
for large a. 

Another parameter which is equally significant is the 
frequency of dropping or advancing half cycles ( $ 1  = x ) .  

In the mechanical analog this corresponds to the pendu- 
lum arriving at the unstable equilibrium position and 
returning to the stable equilibrium position, either by 
the same route or by going around the full revolution. 
It is nearly intuitive that for a Markov process the fre- 
quency of this event is exactly double the frequency of 
skipping cycles. However, to show this rigorously, we 
note that the expected time for the pendulum to go from 
the equilibrium position + = 0 to + = x and to return 
is T ( x )  + T' ( x ) ,  where T (7) is the expected time to go 
from 0 to + X  and T' (7) is the expected time to go from 
x to either 0 or 2 ~ .  T ( x )  is given by Eq. (61) with +1 = x ,  

while we can show that 

16 
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The integrand is the same as that for T ( x ) ,  but the 
domain of integration is its complement with respect to 
the square of side x (Fig. 11). Therefore, 

T ( T )  + T’(x)  =Jll/”’T expa(cos9 - cosx)dx& 
Y 

= ( ~ ‘ / y )  Zg (a) = [T  (2-.)/2] (67) 
and 

frequency of skipping half-cycles = ( ~ B , ) / [ x *  aZ% (a)] 

(68) 

We can show that these results are approximately cor- 
rect also for the second-order loop when a is large or 
a < < 1 by means of the arguments used in Part V to 
obtain Eq. (43) through (49). 

w X 

Fig. 1 1. Domains of integration for T ( T )  and I’ ( X I  

VII. THRESHOLD CONSIDERATIONS AND CONCLUSIONS 

By means of the approximate models discussed in 
Part I, Van Trees (Ref. 5 )  and Develet (Ref. 6) have 
attempted to determine the threshold of the phase-locked 
loop; the threshold, as they define it, is the value of SNR 
for which the variance of the phase error becomes un- 
bounded. However, we have shown by an exact analysis 
that the variance of the steady-state error is always 
bounded by the variance of the rectangular distribution 
p (4) = (1 /2~)  for -7 < + < T ,  which equals (~*/3) .  
This is due to the fact that phase is measured to the 
nearest cycle (i.e., modulo 27~). On the other hand, if we 
count P change of a full cycle of phase as a phase error 

of 2 X ,  and consider the resulting distribution and its 
variance, we find that the variance is unbounded for 
all noise densities greater than zero, for with this premise, 
the steady-state probability density has been shown to 
be a periodic function, so that its variance is necessarily 
unbounded. In simple physical terms, for any nonzero 
noise power, if the noise has a Gaussian distribution 
with probability one the loop will gain or lose a cycle 
if enough time elapses. (For the first-order loop, the ex- 
pected time was obtained exactly in Eq. 64). Therefore, 
in the steady state (i.e., after an infinite interval of time 
has elapsed), the number of cycles skipped has a flat 

1 7  
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probability distribution; hence the probability density 
function is periodic. Since the idea of infinite variance 
for all finite SNR is ridiculous, we have no alternative 
but to accept the concept that phase is meaningful only 
modulo 27, so that the variance is never unbounded. The 
mechanical analog of the simple pendulum discussed in 
Part I1 is useful in visualizing these conclusions. 

I 

? 

If we redefine threshold to mean that value of SNR 
for which the linear model, or some other approximate 
model, becomes inadequate for the analysis, then our 
foregoing results can be utilized to determine the thresh- 
old of the model. It has been shown that, for a first-order 
loop with no frequency offset, the steady-state phase 
error has probability density 

exp (a cos +) 
(+) = %I, ,  (a) 

where a = (A2)/(Nl, B L )  and that this is approximately 
correct also for a second-order loop with small integrator 
gain. Also, we have shown that the variance of + in 
this case is given by 

( -  1)" I , ,  (a) =? 

u ; = - + 4 x  3 n = 1  n.Z,,(a) (69) 

This is shown in Fig. 12 as a function of l / ( ~  = N ,  BL/A2, 
where it is compared with the variance obtained from 

I the linear model which is simply 

Also shown in Fig. 12 are the results using the approxi- 
I mate models of Van Trees and Develet. Van Trees 

(Ref. 5 )  shows that for the first-order loop with no fre- 
quency offset (in our terminology) 

(Van Trees) (71) 
1 

a - 1  4 = - 

SO that the model yields an unbounded variance at 
a 6 1. Develet (Ref. 6) used the quasi-linearization tech- 
nique of Booton (Ref. 7) which replaces the sinusoidal 
nonlinearity of Fig. 4 by its average gain, assuming that 
the input distribution is nearly Gaussian. The gain of a 
sinusoidal nonlinearity for an input of value x is A cos x. 
Therefore, the average gain when the input is Gaussian 
of mean zero and variance u2 is 

I 

[I Acosxexp(z)dx go' = Aexp( - 5)  

2.4 

2.2 

2.0 

1.8 

I .6 

I .4 

: 1.2 
0 

N 
L 

b 
1.0 

0. e 

0.6 

0.4 . 

! / a  = (N. B ~ ) / ( A * )  

Fig. 12. Comparison of variance for first-order loop 
with results of approximate models 

Replacing the nonlinear element of Fig. 4 by this gain, 
we obtain, by the usual linear analysis, the variance of the 
phase error for the first-order loop: 

U? = (l/a) exp (~ ' /2 )  (Develet) (72) 

The solution of this transcendental equation yields the 
value of the variance which is also shown in Fig. 12. 
The maximum of U* exp - (0*/2) is 2/e so that there 
can be no solution for (Y < e/2. This is the point of un- 
bounded variance for Develet's model. 

In Fig. 12 we see that for SNR = (Y > 1, the linear 
model always yields an underestimate while Van Trees' 
result is always an overestimate of the variance of the 
phase error, as might be expected from the nature of 
the approximations. With the linear model the error 
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in the approximation is less than 20% as long as 
[ ( N o  BL)/Az]  < 1/4, or a > 4 which is a figure often 
quoted by experimenters as a threshold of the linear 
model. Develet’s model yields by far the most accurate 
result. In fact, it differs from the exact result by less 
than 10% for [(No BL)/A2] < 0.65, or a > 1.54. Thus it 
would appear that if the exact solution cannot be ob- 
tained, as is the case for higher order loops, colored 
noise, or a modulated carrier, the Booton quasi-linearized 
model would yield quite accurate results when the SNR 
in the loop bandwidth is above 1.5. 

The other significant result of this Report, which can 
be used to define threshold, is the frequency of skipping 
cycles. It was shown in Part VI that for a first-order loop 
with no frequency offset or a second-order loop with very 
small integrator gain, the 

frequency of skipping cycles = (2BL)/[a2aZg (a ) ]  

which is plotted in Fig. 10. Thus we might set the thresh- 
old of the system as the SNR below which the frequency 
of skipping cycles exceeds a given value. Thus, for ex- 
ample, let BL = 20 cps and the maximum allowable fre- 
quency of skipping cycles be once every minute. Then 
we see from Fig. 10 that the threshold of the system is 
at a = 3.6. Note, however, that when the system operates 
at a = 7.2, 3 db above threshold, the frequency of skip- 
ping cycles drops to once every 20 hr reflecting the 
exponential behavior of this expression. This definition 
of threshold is most significant for coherent tracking 
applications wherein the doppler frequency is measured 
and integrated to obtain relative range information. Loss 
or gain of a cycle will yield incorrect results. 

A third definition of threshold is the SNR for which 
exceeds the absolute value of the loop phase error 

a given value +,, exactly half the time. For the first-order 
loop with 0 = 0 0 ,  this information is available from the 
cumulative probability distribution of Fig. 6. For exam- 
ple, if we set $0 at ~ / 4  rad, we find from Fig. 6 that the 
SNR at which 141 exceeds this value exactly half the 
time is a = 1.1. We see also that when the SNR is 3 db 
above this threshold level (i.e., a = 2.2), then I + I exceeds 
a/4 rad only about three-tenths of the time. 

‘ 

It is felt that the third definition of threshold has the 
least significance. The definition in terms of skipping 
cycles is most meaningful for ranging and tracking appli- 
cations. However, the most useful result is the determina- 
tion of the threshold of validity of the various models of 
the phase-locked loop. By comparing the variance of the 
phase error computed from each of the models with the 
actual variance for the first-order loop, which is the only 
case for which an exact solution in closed form is avail- 
able, we have been able to determine these validity 
thresholds. The linear model underestimates the variance 
by less than 20%, for SNR > 4 (6 db). Van Trees’ model 
overestimates u2 to within this accuracy for SNR > 2.5 
(4 db), while Develet’s model is accurate to within 10% 
for SNR >1.54 (1.7 db). It does not necessarily follow 
that each model will yield equal accuracy for more com- 
plicated loops or signals, but these figures do represent 
lower bounds on the over-all validity. They also provide 
a ranking on the merits of the three models. It appears 
that the simpler the expression for variance, the less 
accurate is the result. If we wish merely to obtain bounds 
on performance, the results of Fig. 12 suggest that we 
use the linear model as an upper bound and Van Trees’ 
model as a lower bound. On the other hand, if we are 
willing to solve a transcendental equation of the type 
of Eq. (69), it appears that Develet’s model produces 
signscantly greater accuracy over a much wider range 
of SNR. 
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